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Abstract. W e  compute the Hall conductivity in a variety of model disordered twc- 
dimensional systems by numerically evaluating the appropriate Kubo-Greenwood 
formula. Our models range from substitutional binary alloys to topologically d i s o ~  
dered ‘glasses’, and include systems where the disorder is caused by the random small 
displacements of atom from their positions in a crystalline lattice. Our Hamiltonian 
is reminiscent of the Kronig-Penney model in that 6-function-like atomic potentials 
are specified by a single parameter. We focus particularly on the sign of the Hall 
coefficient. and establish that the sign can be positive even when there is no well- 
defined dispersim relation for the electrons. We observe a eorirlation between the 
Hall coefficient and the derivative of the density of electron s ta tes  

1. Introduction 

It is well known that the simple free electron result for the Hall coefficient is R, = 
-l/n le 1, with e the electron charge and n the number density of electrons. The 
negative Hall coefficients exhibited by simple metals are therefore easy to understand. 
The positive coefficients observed in other crystalline materials are ascribed to the 
existence of definite dispersion relations for the electrons, from which are derived 
negative effective masses. 

However, measurements of positive Hall coefficients have also been reported in 
many liquid and amorphous transition metals, and alloys having transition metal 
components [I]. Here, since there is no translational invariance of the spatial structure, 
the concept of an effective mass is of uncertain validity, and so there have been a 
number of attempts to provide a more appropriate theoretical description. 

In its simplest form, the most widely used model of electron transport in noncrys- 
talline metals, namely the Faber-Zimao theory [2], predicts that the Hall coefficient 
should take its free-electron value. There have thus been various attempts to extend 
this model. The approach of Weir and co-workers [3] has been to invoke a disper- 
sion relationship and to use the concept of ‘effective mass’ even when translational 
invariance is not present. Harris [4] has presented a formula where RH depends on the 
derivative of the electron lifetime 7 with respect to the energy. His expression cxplains 
the positive sign of R, occuring in many glassy transition metal alloys if &/aE is 
large and negative. Such modifications of the Ziman approach require that EF he 
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situated in the region of the d-states, as will typically be the case for the transition 
metal glasses. However, they also require that only weak scattering occurs, and this 
is certainly wrong in glassy metals. 

A quite different approaeh is based on the experimental observation, first docn- 
mented by Busch and Guntherodt 151, that  the sign of the Hall coefficient is correlated 
with the sign of the derivative of the density of states, dN/dE. Some time later, 
Movaghar [6] presented an argument for this idea in the weak scattering limit and 
suggested that the result might have more general validity. In a more recent ap- 
proach, Nguyen-Manh et  ai (71 give a justification based on plausible assumptions 
about the velocity matrix elements between exact eigenstates of the zero-field Hamil- 
tonian. They argue that R, is proportional to dN/dE, and inversely proportional 
to the square of N ( E )  itself, and discuss the relationship of their ideas with those of 
Weir and co-workers 131. 

In this letter, we adopt quite a different approach. We construct models of the 
topological disorder, and then numerically evaluate the Kubo-Greenwood expression 
for the Hall coefficient. Our intent is to identify the origins of positive coefficients 
within the simplest possible model of electronic structure: only then, we believe, can 
we proceed to model realistic metallic glasses. We show two things, first that  there can 
be a positive Hall coefficient even when the scattering is only s-wave, and when the 
electron dispersion relation is but poorly defined, and second, that there is indeed a 
strong correlation with the energy-derivative of the density of electronic states. How- 
ever, we find that only the extended electron states play a role: to demonstrate these 
effects within the numerical limitations of our model, we must omit the contribution 
of those states which are localized, 
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2. Models of the disorder and of the electronic structure 

As in our earlier work on universal conductance fluctuations [S,9], our Hamiltonian 
is defined in real space in terms of potentials U, centred a t  each site Ri of a chosen 
structure. 

The simplest structure is a square lattice, and in this situation the disorder is 
a consequence of the random distribution of two species of potentials on the sites. 
Topological disorder is modelled by placing potentials of one species according to 
structures of close-packed discs with different packing fractions. We use structures 
generated by a Monte Carlo algorithm [lo] with packitig fractions appropriate to 
glassy behaviour. Also, we generate structures in which potentials of one species are 
displaced from the sites of a square lattice by small random amounts. The z- and y 
components of the random displacements are drawn from a rectangular distribution, 
and the degree of disorder is defined by choosing the width of the distribution. We 
call these structures ‘shaken lattices’[9]. 

The analytic form of each potential relative to its centre is [ll] 

V ( T )  = -be-qr/(l - P - q r )  

in the limit b -t c o , q  -.+ w with b /q2  + $. This limit is convenient because it 
determines U by only one parameter 7 given by b = yq+~’/2. The potential U then has 
only one bound state at  energy E = -y2/2 with wavefunction q5(v) = m e - T r / T  
[Ill. Although the potential is &function-like, it is not a true 3-d &function: if it 
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were, there would be no bound state. Units of energy are such that li2/m is set to 
unity, and lengths are measured in terms of the average spacing between sites, which 
for the crystalline samples is just the lattice spacing. 

We then use the set { 4 * ( ~  - Ri)) as basis functions for a tight-binding expansion. 
This yields matrix elements for the Hamiltonian H,, (in the absence of a magnetic 
field B )  and for the overlap matrix S which has a simple form given in our earlier 
paper [8]. The tight-binding matrix equations are then solved explicitly for structures 
containing up to 3 P  sites, giving eigenfunctions of the form 

again for the case when B is zero. I t  is convenient to use the notation Im,,) for these 
functions, to distinguish them from the eigenfunctions in the presence of a field, which 
will be denoted by Im). 

3. The Kubo formula for the Hall conductivity 

Using the tight-binding wavefunctions, it is straightforward to evaluate the Hall co- 
efficient numerically, using Kubo formulae for the diagonal and nondiagonal elements 
of the conductivity tensor in a magnetic field E .  Thus, in the weak field limit, the 
Hall coefficient is given by 

where us, denotes the antisymmetric part of the nondiagonal element of the conduc- 
tivity tensor, and U== is the usual diagonal element. To obtain R,, usy must be 
calculated to the lowest order in B ,  i.e. up to O ( B ) ,  but for uzr the zero field value 
is sufficient. 

Although the numerical evaluation of the Kubo expression for uz2 has become 
almost routine [12], there are several possible ways to write the expression for uzy to 
simplify its evaluation. The most convenient for present purposes has  been given by 
many authors [13,14] and at T = 0 K can be written as 

uzy = 02, + O ( B z )  

where utv at energy E is given by 

I u,G(Et)vy6(E - H )  I m) - (m I u,6(E - H)v,G(E-) I 2R 

or in more compact form 

In these expressions, E* is E & iq, q 3 Ot, $7 is the volume of the system, and we 
have used the eigenstates I m) of the Hamiltonian H. 
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All the operators are defined in the presence of the magnetic field, so that the 
Hamiltonian H contains the appropriate vector potential. Explicitly, we write 

H = Ho + iBH,  

with 
iHB = e (wy  - yu,) . 

In terms of H ,  the velocity operators vI and vy are defined as 
1 

uz = - [ H , r ]  t = z , y  
h 

and the resolvent operator is 
G(E*) = 1/(E - H f iq) . 

To compute R, requires only terms up to O(B) ,  so that we can write 

Im) = I m0) i- I mB) 
B vz = U: -!- Bv, 

G = Go -!- iBGoHBGo. 
and 

Of the terms which result from the corresponding substitutions, we keep only those 
of o(B), and those terms which have the correct symmetry under the exchange of z 
and y coordinates. We then obtain 

he' dy = - F E  Rex(mo IU:G~(E+)H,G~(E+)V~ lmo)6(E - E,,,). 
m 

The final simplification is the neglect of the real parts of Go(E+)  which we justify in 
the same manner as do hlorgan et aI [14], so that we obtain 

where the imaginary part of Go is written as 
go(E)  = a6(E- No). 

This is an expression which can be evaluated with the knowledge of only the eigenvalues 
and eigenfunctions of thc zcrc-field Hamiltonian 11,. It is convenient to  evaluate the 
matrix elements of HB by expressing them in the form given by Bhattacharya et  al 

In the actual computation, we must compensate for the discreteness of the energy 
spectrum of our finite systems by giving each delta function a finite width 6 [SI. 
Therefore uzy and U*= are given by 

~ 5 1 .  

where the primed sums extend only over states within a wikdow~of~widtb~c around 
the energy E. In our calculations e is taken to be approximately 2% of the total 
bandwidth. 
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4. Results 

Representative results of the calculation of ury as a function of energy are shown in 
figure 1, and the corresponding Hall coefficients R, in figure 2. In each case the data  
shown are averages over 10 runs, and the statistical variation from the mean values 
at  each energy is around 0.5 x units for uzv and around 0.1 units for R,. The 
first data, obtained for purposes of comparison, refers to substitutional alloys on a 
square lattice with 35’ sites. 90% of the sites have y = 1.0, and the remainder have 
y = 1.5. The variation of the sign of R, as afunction of energy is clearly evident, with 
a change of sign occuring roughly in the middle of the band. The units are such that 
the ‘free-electron’ value would be unity. These data  can be understood in terms of the 
electron dispersion relation, which is well defined, and has an inflection point precisely 
at  the energy where RH changes sign. The numerical procedure is thus successful in 
this situation. 
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Figure 1. The off-diagonal conductivity for unit 
field. a,,(B) B = 1.0, as a fwrction of energy for 
three different disordered systems (a) substitu- 
tiond alloy ( b )  topological disorder (c) shaken 
lattice. For details of the structures, see the text. 
The broken lines intersect where sly changes 
sign 

Figure 2. The Hall coefficient RH as a fundion 
of energy for t h e  different disordered systenm 
(a) substitutional alloy ( b )  topological disorder 
( e )  shaken lattice. For details of the struct-s, 
see the text. The broken tines intersect where RH 
changes sign. 

The second data set is for topologically disordered systems. They are the same 
structures, with packing fraction 0.64, used in our investigation of conductance fluctu- 
ations 191. The change in sign of uSg as a function of energy is still present, although 



1510 

no longer at  the centre of the band, but the variation of R,  with energy shows large 
variations at  the edges of the band. These can be traced to small values of U,, caused, 
in their turn, by the presence of localized states. These states are identified both by 
the values of their participation ratios [16] and, in some cases, by visual inspection of 
their spatial distribution. 

Also shown in the figures are data for shaken lattices with random displacements 
chosen from a random distribution with maximum value 20% of the lattice spacing. 
The degree of disorder in these systems is comparable to that in the topologically 
disordered systems, as measured at  the centre of the band both by a participation 
ratio of around 0.26, and by a conductivity of around 5.0 units [9]. Once again, 
there is a clear indication of a change in sign of usy as a function of energy: it 
occurs near the centre of the band. As for the topologically disordered case, the Hall 
coefficient R, diverges at the edges of the band, because of the presence of localized 
states. 

The existence of the change of sign of U=# in all three cases is our first important 
result. Positive Hall coefficients arise from s-wave scattering alone, both in substitu- 
tionally and topologically disordered situations. We have explicitly verified that this 
not because of a vestigial dispersion relation E(k ) .  A Fourier analysis of typical wave 
functions a t  energy E shows that they are a superposition of all possible plane waves 
having that same energy. I t  is therefore of interest to investigate possible correlations 
with other physical parameters. 

In this respect, our next result is the observation that the Hall conductivity uSy 
changes sign a t  the energy where the density of states happens to have a maximum. 
In particular, this is the case both for the shaken lattices and for the topologically 
disordered systems, although for these latter systems, the positive value of the Hall 
conductivity is very small, and occurs over only a restricted range of energy. This 
observation is consistent with an association of the Hall coefficient with the derivative 
of the density of states: an association that cau be tested numerically. 

Because numerical differentiation of our density of states functions is an inher- 
ently noisy procedure. we choose to integrate the Hall coefficient to give N,(E) = 
-JR,(E)dE and then plot N,(E), suitably normalized, and N ( E )  against energy 
for the three sets of data. The results are shown in figure 3, and the agreement be- 
tween the two sets of curves is remarkable, particularly if we ignore energies near the 
lower hand edge. This is a legitimate omission, since from our previous work [8,9] 
we know that in this region the electron states are strongly localized. The degree 
of localization, as measured by the participation ratio, increases dramatically as the 
energy approaches the band limit, and there is even some evidence for a mobility edge. 

In view of the suggestion of Nguyen-Manh el a[ [7] that R,  is also inversely 
proportional to the square of N(E,) itself, we have also compared N ( E )  against 
- N(E)’R,(E)dE. Since N(E) varies only gradually with energy in the central re- 
gions of our bands, the agreement in these regions is equally good. However, in regions 
close to the upper band edges, where N ( E )  varies strongIy with energy, agreement 
is significantly worse. We do not find conclusive evidence, therefore, to support their 
suggestion, 
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5. Discussion 

The reason for the striking correlation between R, and the density ofstates is far from 
clear, although i n  principle it must depend upon the properties of the matrix elements 
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-0.5 0.5 

E 

Figure 3. The integrated Hall coefficient 
N H ( E )  (full curves), and the density of scater 
N(E) (broken curves) as a function of en- 
ergy for three different disodered system: (a) 
subrtilutiond alloy (6) toppolo&4 disorder (e )  

%.O -1.2 -0.4 0.4 shaken lattice. For detaik or the structures, see 

_-  

E the text. 

of the velocity operators U= and vy. Our numerical data suggests that these matrix 
elements-at least between states that are close in energy-are essentially random 
variables, but we have not been able to characterize their distribution in a meaningful 
way. Thus, we have not yet succeeded in reducing the analytic expression for ury to 
a form which transparently reproduces our numerical results. 

In this respect we have not been able to improve upon the work of Nguyen-Manh 
el  01 [7]. As their discussion makes clear, in  order to develop a suitable decoupling 
procedure, it is important to take account of the correlations between the velocity 
matrix elements of states which are close in energy. Presumably these correlations 
have to do with the nature of the wavefunctions themselves, and will emerge from 
a detailed study of the subtle real-space correlations in the strong scattering regime. 
We intend to carry out such a study in the context of extensions of ‘weak localization’ 
theory to this regime [17] using the simple numerical models described in this paper. 
I t  will then be possible to study the role of the localized states near the band edge, 
and to improve understanding of the velocity matrix elements and of the mechanisms 
for electron transport in a magnetic field. 
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